Fine-Grained Tree-to-String Translation Rule Extraction
نویسندگان
چکیده
Tree-to-string translation rules are widely used in linguistically syntax-based statistical machine translation systems. In this paper, we propose to use deep syntactic information for obtaining fine-grained translation rules. A head-driven phrase structure grammar (HPSG) parser is used to obtain the deep syntactic information, which includes a fine-grained description of the syntactic property and a semantic representation of a sentence. We extract fine-grained rules from aligned HPSG tree/forest-string pairs and use them in our tree-to-string and string-to-tree systems. Extensive experiments on largescale bidirectional Japanese-English translations testified the effectiveness of our approach.
منابع مشابه
Akamon: An Open Source Toolkit for Tree/Forest-Based Statistical Machine Translation
We describe Akamon, an open source toolkit for tree and forest-based statistical machine translation (Liu et al., 2006; Mi et al., 2008; Mi and Huang, 2008). Akamon implements all of the algorithms required for tree/forestto-string decoding using tree-to-string translation rules: multiple-thread forest-based decoding, n-gram language model integration, beamand cube-pruning, k-best hypotheses ex...
متن کاملAdjoining Tree-to-String Translation
We introduce synchronous tree adjoining grammars (TAG) into tree-to-string translation, which converts a source tree to a target string. Without reconstructing TAG derivations explicitly, our rule extraction algorithm directly learns tree-to-string rules from aligned Treebank-style trees. As tree-to-string translation casts decoding as a tree parsing problem rather than parsing, the decoder sti...
متن کاملSemantic Roles for String to Tree Machine Translation
We experiment with adding semantic role information to a string-to-tree machine translation system based on the rule extraction procedure of Galley et al. (2004). We compare methods based on augmenting the set of nonterminals by adding semantic role labels, and altering the rule extraction process to produce a separate set of rules for each predicate that encompass its entire predicate-argument...
متن کاملLearning Better Rule Extraction with Translation Span Alignment
This paper presents an unsupervised approach to learning translation span alignments from parallel data that improves syntactic rule extraction by deleting spurious word alignment links and adding new valuable links based on bilingual translation span correspondences. Experiments on Chinese-English translation demonstrate improvements over standard methods for tree-to-string and tree-to-tree tr...
متن کاملDeep Syntactic Structures for String-to-Tree Translation
1.1 String-to-tree translation A state-of-the-art syntax-based Statistical Machine Translation (SMT) model, string-to-tree translation model (Galley et al., 2004; Galley et al., 2006; Chiang et al., 2009), is to construct a number of parse trees of the target language by ‘parsing’ a source language sentence making use of a bilingual translation grammar. Given a set of parallel sentences for tra...
متن کامل